
Under Construction:
Property Editors
by Bob Swart

Delphi offers a Tools API,
which allows us to extend the

functionality of the Delphi IDE
itself. There are four different
Tools API interfaces: for Experts
(see Issue 3), Version Control
Systems, Component Editors and
Property Editors. They offer us
the functionality we need to add
new IDE features or enhance the
existing ones!

Property Editors
Property editors are, like Experts
and Version Control Systems, in
this sense extensions of the Delphi
IDE. That may sound very difficult
or complex, but is in fact very easy.
You can even write a property
editor without knowing it – for
enumerated types, for example.
Remember the color property of a
TForm? When you want to enter a
value, you get a drop-down list
showing all possible choices.
That’s an enumerated type prop-
erty editor, a very easy one, and we
can make one with only a few lines
of code.

As an example, I’ve picked the
Starfleet rank overview (as a
confirmed Trekkie what do you
expect!). Or, in Object Pascal, the
enumerated type which is shown in
Listing 1.

In this case, like all other enu-
merated types, we must make sure
that the user cannot make a mis-
take, by typing “commonder”
instead of “commander” for exam-
ple. We need to offer a list of limited
choices: a drop-down list. Well,
that’s exactly what the user gets
when s/he drops the TOfficer
component shown in Listing 2 onto
a form (see Figure 1).

So, we haven’t done anything
special but our first personal
property editor is up and running!
And who knows, it might even be
your second or third, now that you
think about it...

There’s actually much more to
property editors than meets the
eye and we’ve only scratched the
surface. Let’s look deeper and see
if we can do even more. To do that,
we need to check out the one Tools
API source file which defines the
behaviour of the property editors
for which you do need to write
code: DSGNINTF.PAS (in directory
\DELPHI\SOURCE\VCL). This file
contains not only the definition for
the base class TPropertyEditor, but
also numerous derived property
editors for the properties of the
VCL components of Delphi itself.
Most of these property editors are
available for our use as well, like
the TEnumProperty we used for the
TRang enumerated type in the first
example.

Existing Property Editors
Before we actually take a look at a
property editor from the inside,
let’s first examine what kinds of

property editors already exist in
Delphi. To do that, start a new
project, add uses DsgnIntf; to the
implementation section, compile,
open the browser and search for
TPropertyEditor – see Figure 2.

unit Officer;
interface
uses Classes;
Type
 TRang = (cadet, midshipman, chief, ensign, junior_lieutenant, lieutenant,
 lieutenant_commander, commander, captain, commodore, admiral);
 TOfficer = class(TComponent)
 private
 FRang: TRang;
 published
 property Rang: TRang read FRang write FRang;
 end;
procedure Register;
implementation
procedure Register;
begin
 RegisterComponents(’Dr.Bob’, [TOfficer]);
end;
end.

➤ Listing 2

Type
 TRang = (cadet, midshipman, chief, ensign,
 junior_lieutenant, lieutenant,
 lieutenant_commander, commander,
 captain, commodore, admiral);

➤ Listing 1

➤ Figure 1

February 1996 The Delphi Magazine 17

If I count correctly, there are at
least 21 property editors regis-
tered by the DSGNINTF unit. Note,
however, that there are actually
even more property editors
available, like the TPictureEditor
in \DELPHI\LIB\PICEDIT.DCU (I’ll
return to this later on...).

TPropertyEditor
What does a property editor look
like? Well, like an expert, it is
derived from a base class, from
which we need to override some
methods in order to make things
work our way. The TPropertyEditor
base class is defined as shown in
Listing 3 (I’ve left out the private
parts, as we can’t touch them
anyway).

A TPropertyEditor edits a prop-
erty of a component, or a list of
components, selected into the
Object Inspector. The property
editor is created based on the type
of the property being edited, as
determined by the types registered
by RegisterPropertyEditor. A
TPropertyEditor is used by the
Object Inspector whenever a
property is modified.

For now, we will just focus on a
subset of the methods which can
be overridden to change the behav-
iour of the property editor (we’ll
get back to the others in a future
instalment of this column).

GetAttributes is the most impor-
tant method, as it determines the
kind of property editor and its
behaviour. There are three kinds of
property editors (other than the
default editbox-type): a dropdown
value list (we’ve seen that one
before), a sub-property list and a
dialog. GetAttributes returns a set
of type TPropertyAttributes:
➣ paValueList: The property edi-

tor can return an enumerated
list of values for the property. If
GetValues calls Proc with values
then this attribute should be
set. This will cause the drop-
down button to appear to the
right of the property in the
Object Inspector.

➣ paSubProperties: The property
editor has sub-properties
which will be displayed
indented and below the current
property in standard outline

format. If GetProperties will
generate property objects then
this attribute should be set.

➣ paDialog: Indicates that the
Edit method will bring up a
dialog. This will cause the ‘...’
button to be displayed to the
right of the property in the
Object Inspector.

➣ paSortList: The Object Inspec-
tor will sort the list returned by
GetValues (by name).

➣ paAutoUpdate: Causes the
SetValue method to be called on
each change made to the editor
instead of after the change has
been approved (eg the Caption
property).

➤ Figure 2

Type
 TPropertyEditor = class
 protected
 function GetPropInfo: PPropInfo;
 function GetFloatValue: Extended;
 function GetFloatValueAt(Index: Integer): Extended;
 function GetMethodValue: TMethod;
 function GetMethodValueAt(Index: Integer): TMethod;
 function GetOrdValue: Longint;
 function GetOrdValueAt(Index: Integer): Longint;
 function GetStrValue: string;
 function GetStrValueAt(Index: Integer): string;
 procedure Modified;
 procedure SetFloatValue(Value: Extended);
 procedure SetMethodValue(const Value: TMethod);
 procedure SetOrdValue(Value: Longint);
 procedure SetStrValue(const Value: string);
 public
 destructor Destroy; override;
 procedure Activate; virtual;
 function AllEqual: Boolean; virtual;
 procedure Edit; virtual;
 function GetAttributes: TPropertyAttributes; virtual;
 function GetComponent(Index: Integer): TComponent;
 function GetEditLimit: Integer; virtual;
 function GetName: string; virtual;
 procedure GetProperties(Proc: TGetPropEditProc); virtual;
 function GetPropType: PTypeInfo;
 function GetValue: string; virtual;
 procedure GetValues(Proc: TGetStrProc); virtual;
 procedure Initialize; virtual;
 procedure SetValue(const Value: string); virtual;
 property Designer: TFormDesigner read FDesigner;
 property PrivateDirectory: string read GetPrivateDirectory;
 property PropCount: Integer read FPropCount;
 property Value: string read GetValue write SetValue;
 end;

➤ Listing 3

18 The Delphi Magazine Issue 6

➣ paMultiSelect: Allows the prop-
erty to be displayed when more
than one component is se-
lected. Some properties are not
appropriate for multi-selection
(eg the Name property).

➣ paReadOnly: The value is not
allowed to change.

GetValue returns the string value of
the property. By default this
returns (unknown). This should be
overridden to return the appropri-
ate value. GetValues is called when
paValueList is returned in
GetAttributes. It should call the
argument Proc for every value
which is acceptable for this prop-
erty. TEnumProperty will pass every
element in the enumeration, as we
can see in Figure 1.

SetValue(Value) is called to set
the value of the property. The
property editor should be able to
translate the string and call one of
the SetXxxValue methods. If the
string is not in the correct format
or not an allowed value, the prop-
erty editor should generate an
exception describing the problem.
SetValue can ignore all changes and
allow all editing of the property to
be accomplished through the Edit
method (eg the Picture property).

Edit is called when the ‘...’ button
is pressed or the property is
double-clicked. This can, for
example, bring up a dialog to allow
the editing the property in some
more meaningful fashion than by
text (eg the Font property).

TFileNameProperty
With these few basic methods we
now have enough power at our dis-
posal to write our first non-trivial
property editor: an open filename
dialog property editor for filename
properties.

We must remember that writing
components is essentially a non-
visual task and writing property
editors is no different. We have to
write a new unit by hand in the
editor (see Listing 4). We need to
specify that we want a dialog type
of property editor, so we return
[paDialog] in the GetAttributes
function. Then, we can do as we like
in the Edit procedure, which in this
case involves a TOpenDialog to let us
find any existing file.

Note that we call the GetName
function of the property editor to
get the name of the actual property
for which we want to fire up the
TOpenDialog. For a property called
FileName, this would result in the
example shown in Figure 3.

In just a few lines of code we’ve
written a TFileName property editor
which will give great support at
design time for all our components
which use a property of type
TFileName. This illustrates that
property editors have an
enormous potential for designers
of Delphi components.

TFileModeProperty
We’ve seen how we can create and
execute a simple TOpenDialog as a
property editor. But instead of just
a TOpenDialog component, we can
of course show a complete newly
designed form in our property
editor’s Edit method.

Let’s design a FileMode property
editor in which we can specify both
the file access (read-only,
write-only, read-write) and file
sharing (deny-none, deny-read,
deny-write, deny-all) values for a
file. The code for a simple form to
enable us to pick these options

➤ Figure 3

unit FileName;
interface
uses DsgnIntf;
Type
 TFileNameProperty = class(TStringProperty)
 public
 function GetAttributes: TPropertyAttributes; override;
 procedure Edit; override;
 end;

implementation
uses
 Dialogs, Forms;

function TFileNameProperty.GetAttributes: TPropertyAttributes;
begin
 Result := [paDialog]
end {GetAttributes};

procedure TFileNameProperty.Edit;
begin
 with TOpenDialog.Create(Application) do
 try
 Title := GetName; { name of property as OpenDialog caption }
 Filename := GetValue;
 Filter := ’All Files (*.*)|*.*’;
 HelpContext := 0;
 Options := Options + [ofShowHelp, ofPathMustExist, ofFileMustExist];
 if Execute then SetValue(Filename);
 finally
 Free
 end
end {Edit};
end.

➤ Listing 4

20 The Delphi Magazine Issue 6

using two TRadioGroup controls is
shown in Listing 5.

I’ve used two TRadioGroups to
hold the items we can choose from
in a list, just like a listbox or com-
bobox. I think the TRadioGroup is
probably one of the most under-
estimated components on the
palette: one RadioGroup is capable
of showing several radio buttons
which are all easily accessible.

The form is shown in action in
Figure 4, specifying a read-only
deny-none filemode.

To turn this form into a property
editor, we only need to activate it
at the right time (ie in the Edit
method of the TFileModeProperty
editor), and set and get the actual
value of the filemode property we
need. See Listing 6.

TFileInfo
To illustrate the use of this
TFileModeProperty editor, I’ve de-
signed a new component called
TFileInfo, derived from a standard
non-visual TComponent, with two
new properties: FileName and
FileMode. The first one is connected
to the TFileName property editor we
created earlier, while the second
one uses the TFileMode property
editor to interactively set the
desired FileMode. See Listing 7.

Note that this component regis-
ters its own property editors in the

unit FileMode;
interface
uses
 Forms, Buttons, StdCtrls, ExtCtrls;
Type
 TFileModeDlg = class(TForm)
 OKBtn: TBitBtn;
 CancelBtn: TBitBtn;
 HelpBtn: TBitBtn;
 Bevel1: TBevel;
 FileAccess: TRadioGroup;
 FileSharing: TRadioGroup;
 procedure OKBtnClick(Sender: TObject);
 procedure FormActivate(Sender: TObject);
 public
 FileShareMode: Word;
 end;

implementation
{$R *.DFM}

procedure TFileModeDlg.FormActivate(Sender: TObject);
begin
 FileAccess.ItemIndex := (FileShareMode MOD $10);
 FileSharing.ItemIndex := (FileShareMode SHR 4)
end;

procedure TFileModeDlg.OKBtnClick(Sender: TObject);
begin
 FileShareMode := FileAccess.ItemIndex + (FileSharing.ItemIndex SHL 4)
end;
end.

➤ Listing 5

➤ Figure 4

➤ Figure 5

Register procedure where the
component itself is registered.
Figure 5 shows the TFileInfo
component in action with the two
new property editors.

TBUUCode
While TFileInfo is but an example
component, we can easily extend
the TBUUCode components for file
UUEncoding and UUDecoding from
the last few issues, using these
property editors for the InputFile
property.

In fact, I’ve already done so and
the new source code for the
TBUUEnCode and TBUUDeCode compo-
nents is (again) included on the
subscribers’ disk with this issue.

TPictureEditor
We’ve already seen how to make
picture editors that behave like
dialogs. And this reminds me of the
most irritating property editor in
Delphi: the picture editor for
glyphs, icon, bitmaps etc.

It’s not the fact that it doesn’t
work, it’s just the fact that it isn’t
very user friendly. If I click on the
Load button I get a TOpenDialog that
gives me the option to select a
.BMP, .ICO or whatever file I wish.
However, I don’t get to see what’s
actually inside this file until I close
the TOpenDialog. Then I’m back in
the Picture Editor and if I decide
it’s not the file I really want I have
to click on the Load button again

February 1996 The Delphi Magazine 21

and start all over again. It’s
especially annoying if you have to
browse through a directory with
many TBitBtn bitmap files.

I would like a preview option, so
I can see what the image in a file
looks like while I’m browsing
through a directory! It sounds
exactly like a new property editor
to me (Note: since Borland didn’t
provide us with the source of
PICEDIT.DCU, we don’t have the
PICEDIT.DFM form either and have

to write our own picture editor
instead of enhancing the already
existing one).

TImageForm
First of all, we have to design the
actual dialog or form which will be
used by our new property editor.
Figure 6 shows my form: the area
where the image of Dr.Bob is
shown, in the lower-right corner, is
used to display the image of any file
which is currently selected in the

file listbox. Depending on your
needs, you can even stretch this
image (not recommended for little
TBitBtn bitmap images, but useful
if you have large bitmaps and only
want a preview).

Note that I’ve used the compo-
nent TDirectoryOutliner (from my
Performance Optimisation articles
in Issues 4 and 5) in this form. The
complete source code is on the
disk with this issue, but I’ve also
uploaded the .DCU version of this
property editor to the DELPHI
forum on CompuServe, so if you
don’t have a subscription yet
(shame on you!) then you can at
least get it to work.

Now that we have a form to ask
for which image to use, let’s see
how we can get this to work as a
property editor. We need to take a
look at GRAPHIC.PAS to see what
kinds of pictures, glyphs and im-
ages exist in the first place. It seems
we are limited to two descendants
of TPersistent: TPicture and
TGraphic, with descendent TBitmap
of TGraphic. For this column, let’s
just focus on .BMP files, and hence
on the TPicture and TBitmap classes
only. This means we want to offer
the new Image Property Editor for
properties of type TPicture and
TBitmap. See Listing 8.

Note that since we don’t explic-
itly want the TPictureEditor to
belong to one specific component,
we have to register it ourselves
here, and install it just like any
other custom component or expert
from the Delphi IDE’s Options |
Install Components dialog. After
rebuilding your COMPLIB.DCL
(remember to make that backup
first!), you will get the new picture
editor for each TPicture (in a
TImage) or TBitmap (for example in a
TSpeedButton or TBitBtn).

One last important thing: Delphi
already had a property editor in-
stalled for TPictures and TBitmaps,
namely the picture editor Borland
provided. Won’t we get into
trouble if we want to use our own?

No, we won’t, because it seems
that the last property editor which
has been registered for a particular
component or property type will
override the previous one. So, if
you ever install another property

unit FileProp;
interface
uses DsgnIntf;
Type
 TFileModeProperty = class(TIntegerProperty)
 public
 function GetAttributes: TPropertyAttributes; override;
 procedure Edit; override;
 end;

implementation
uses
 SysUtils, Controls, FileMode;

function TFileModeProperty.GetAttributes: TPropertyAttributes;
begin
 Result := [paDialog]
end {GetAttributes};

procedure TFileModeProperty.Edit;
begin
 with TFileModeDlg.Create(nil) do
 try
 FileShareMode := GetOrdValue;
 if ShowModal = mrOk then
 SetOrdValue(FileShareMode)
 finally
 Free
 end
end {Edit};
end.

➤ Listing 6

unit FileInfo;
interface
uses
 Classes, SysUtils;
Type
 TFileInfo = class(TComponent)
 private
 FFileName: TFileName;
 FFileMode: Word;
 published
 property FileName: TFileName read FFileName write FFileName;
 property FileMode: Word read FFileMode write FFileMode;
 end;
procedure Register;

implementation
uses
 DsgnIntf, FileProp, FileName;

procedure Register;
begin
 RegisterComponents(’Dr.Bob’, [TFileInfo]);
 RegisterPropertyEditor(TypeInfo(Word), TFileInfo, ’FileMode’,
 TFileModeProperty);
 RegisterPropertyEditor(TypeInfo(TFilename), nil, ’’, TFilenameProperty)
end;
end.

➤ Listing 7

22 The Delphi Magazine Issue 6

➤ Figure 6

unit PictEdit;
interface
uses DsgnIntf;
Type
 TPictureEditor = class(TClassProperty)
 public
 function GetAttributes: TPropertyAttributes; override;
 procedure Edit; override;
 end;
 procedure Register;

implementation
uses
 SysUtils, Controls, Graphics, TypInfo, ImageFrm;

function TPictureEditor.GetAttributes: TPropertyAttributes;
begin
 Result := [paDialog]
end {GetAttributes};

procedure TPictureEditor.Edit;
begin
 with TImageForm.Create(nil) do
 try
 ImageDrBob.Picture := TPicture(GetOrdValue);
 if ShowModal = mrOk then begin
 if (GetPropType^.Name = ’TPicture’) then
 SetOrdValue(LongInt(ImageDrBob.Picture))
 else { Bitmap }
 SetOrdValue(LongInt(ImageDrBob.Picture.Bitmap))
 end
 finally
 Free
 end
end {Edit};

procedure Register;
begin
 RegisterPropertyEditor(TypeInfo(TPicture), nil, ’’, TPictureEditor);
 RegisterPropertyEditor(TypeInfo(TBitmap), nil, ’’, TPictureEditor)
 end;
end.

➤ Listing 8

editor for TBitmaps, for example,
you will override the one we’ve just
built.

More Property Editors
So far, we’ve only seen a few of the
possible kinds of property editors

we can write. We’ve focussed
especially on paDialog property
editors – in my view the easiest way
to customise the entry of property
values at design time. However,
there are many more kinds of
property editors and ways to write

them, so we’ll just have to come
back later to explore these in detail
in future columns. For now, I hope
I’ve given you enough to chew on
for a month!

Next Time
Next time we’ll focus on a type of
component we haven’t touched at
all so far: data-aware components.
We’ll explore how they work, learn
what makes them tick and even
develop one of our own: a data-
aware multi-media player. After
that, we’ll slowly return to the
subject of Tools APIs and Delphi
IDE Experts when we start explor-
ing the so-called Component
Editors in the April issue.

Stay tuned and make sure you’ve
always got a backup of your
COMPLIB.DCL in a save place!

Bob Swart (you can email him at
100434.2072@compuserve.com) is
a professional 16- and 32-bit
software developer using Borland
Delphi and sometimes a bit of
Pascal or C++. In his spare time, he
likes to watch video tapes of Star
Trek Voyager with his almost two
year old son Erik Mark Pascal.

February 1996 The Delphi Magazine 23

	Property Editors
	Existing Property Editors
	TProperty Editor
	TFile Name Property
	TFile Mode Property
	TFile Info
	TBUU Code
	TPicture Editor
	TImage Form
	More Property Editors
	Next Time

